Functional unit size of the charybdotoxin receptor in smooth muscle.
نویسندگان
چکیده
Target inactivation analysis was used to determine the functional size of the charybdotoxin (ChTX) receptor in aortic and tracheal sarcolemmal membrane vesicles. This receptor has previously been shown to be an integral component of the high-conductance Ca2+-activated K+ (Maxi-K) channel in these smooth muscles. Exposure of either bovine aortic or bovine tracheal sarcolemma to high-energy irradiation results in disappearance of 125I-labeled ChTX binding activity as a monoexponential function of radiation dose; from these functions molecular masses of 88 +/- 10 kDa and 89 +/- 6 kDa, respectively, can be calculated. Similar results were obtained from radiation inactivation studies with the detergent-solubilized ChTX receptor from aortic sarcolemmal membranes. The effect of radiation on 125I-labeled ChTX binding is to decrease the number of functional ChTX receptors without affecting the affinity of receptors for the toxin, indicating that radiation is destroying, rather than altering, the binding site. The validity of the radiation inactivation technique in these membrane preparations is supported by data obtained in parallel experiments in which target sizes of the alpha 1 subunit of the L-type Ca2+ channel and 5'-nucleotidase were measured. The molecular masses determined for these entities are in excellent agreement with those expected from previous studies. The present data are discussed in terms of the recently determined subunit composition of the smooth muscle Maxi-K channel. In light of the target size, a single alpha beta subunit heterodimer complex could serve as the ChTX receptor.
منابع مشابه
MUSCARINIC RECEPTOR SUBTYPES IN SMOOTH MUSCLE FROM THE BODY OF HUMAN STOMACH
Up to date, there are four pharmacologically characterized subtypes of muscarinic receptors (M1, M2, M3 and M4). In our study we have investigated muscarinic receptor subtypes in smooth muscle layers of human stomach. Isolated preparations of longitudinal and circular muscle layers from human stomach were used. Acetylcholine, bethanechol, carbachol, pilocarpine and AHR -602 produced concen...
متن کاملEnhanced expression of transient receptor potential channel 3 in uterine smooth muscle tissues of lipopolysaccharide-induced preterm delivery mice
Objective(s): We aimed to investigate the influence of transient receptor potential channel 3 (TRPC3) on lipopolysaccharide-induced (LPS) preterm delivery mice. Materials and Methods: Mice were randomly assigned to the four groups: an unpregnant group, a mid-pregnancy group (E15), a term delivery group, and an LPS-induced preterm delivery group (intraperitoneal injection LPS at 15 days). Uterin...
متن کاملZataria multiflora Boiss inhibits muscarinic receptors of incubated tracheal smooth muscle with propranolol
Objective(s): In the present study, the effect of tissue incubation with propranolol on functional antagonism of Zataria multiflora Boiss (Z. multiflora) at muscarinic receptors of tracheal smooth muscle was examined. Materials and Methods: The effects of three concentrations of aqueous-ethanolic extract, 10 nM atropine, and saline on muscarinic receptors were tested on incubated tracheal smoo...
متن کاملEffect of Adenosine Agonists on the Proliferation and Differentiation of Chick Embryo Fibroblasts in Three Dimensional Reconstituted Tissue Constructs
Previous studies indicate that organ fibroblasts play an important role in wound healing, collagen production, remodeling processes and pathogenesis of progressive heart, lung, renal and hepatic fibrotic diseases. Several studies suggest a possible inhibitory role for adenosine in the regulation of fibroblast proliferation. The effect of adenosine A2 agonists on proliferation and differentiatio...
متن کاملStimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels
Stimulation of vascular calcium-sensing receptors (CaSRs) is reported to induce both constrictions and relaxations. However, cellular mechanisms involved in these responses remain unclear. The present study investigates the effect of stimulating CaSRs on vascular contractility and focuses on the role of the endothelium, nitric oxide (NO) and K(+) channels in these responses. In wire myography s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 11 شماره
صفحات -
تاریخ انتشار 1994